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Figure 1. Circular dichroism curves in acetonitrile. 

observation that an NOE exists between H-2 and the 
high-field methyl (16-20%) and not between H-2 and 
the low-field methyl in the spectra of 2 strongly sup­
ports conformation 2b over 2a. This conformational 
assignment is supported further by the observed long-
range, five-bond coupling between H-2 and H-7 in 
2 (5Z4,7 ~ 1.0 Hz). Similar long-range coupling be­
tween H-2 and H-7 has been observed in cepham where 
the C-4 proton occupies an a-axial configuration.9 

Accordingly, trans isomer 2 must adopt a conformation 
where H-2 is axially oriented and is in the same geo­
metrical relationship to H-7 as in cepham systems where 
coupling of this nature has been previously observed. 
Such a geometrical relationship is satisfied by stereo-
formula 2b. 

Clear conformational and configurational assign­
ments for thiazolidine derivative 3, obtained as a by­
product in the synthesis of la and 2b, can be made 
from an analysis of the 100-MHz DMSO-^6 spectrum 
of this compound. The following nmr data are offered 
as evidence for the assignment of this product to struc­
ture 3: a 1.13 (s, 3, CH3), 1.61 (s, 3, CH3), 3.51 (d 
of d, 1, J = 5.5; 14.5 Hz, H-6), 3.84 (d of d, 1, J = 10, 
14.5 Hz, H-6), 3.84 (d, 1,J = 13.5 Hz, H-4), 4.25 (d 
of d, 1, 7 = 7.5, 13.5 Hz, NH, D2O exchangeable), 
4.95 (m, 1,J= 5.5, 10, 7.5 Hz, H-2). The observed 
couplings of 13.5 Hz between NH and H-4 and 7.5 
Hz between NH and H-2 require dihedral angles of 
approximately 180 and 30°, respectively, between these 
protons10 and establish the C-2 configurations and 
thiazolidine conformation shown in structure 3. Other 
thiazolidine conformational and C-2 configurational 
possibilities are eliminated readily on the basis of in­
compatibility with recorded NH coupling information. 

Unfortunately, the nmr spectrum of 4 in DMSO-c?6 

does not reveal a discernible NH signal. As a result 
vicinal NH couplings cannot be measured and a com­
plete stereochemical assignment for 4 could not be 
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Figure 2. Skeletal conformation of the cis isomer in the crystalline 
state. Thermal ellipsoids are drawn to include 50% probability. 

determined unequivocally. However, on the basis 
of nmr data11 and mechanistic considerations, we be­
lieve that 4 has the structure shown above. 
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(11) Compound 4 shows the following nmr data in CDCl8: S 1.20 
(s, 3, CH3), 1.60 (s, 3, CH3), 3.95 (d of d, 1, J = 4.5, 14.5 Hz, H-6), 
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and 4.95 (d of d, 1,J = 4.5, 7.5 Hz, H-2). 
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2,3-Dimethylenebicyclo[2.2.0]hexane and Its 
Cycloreversion to 2,3-Dimethylenecyclohexa-l,3-diene 

Sir: 

Vapor phase thermolysis at 250-300° of 1,2-dimethyl-
enecyclobutane (1) appears to generate tetramethylene-
ethane (2) as a transient intermediate.12 The chem­
istry of this latter species is of considerable current in­
terest.1-8 The bicyclic diene 3 of the title seemed to 
offer an ideal means for producing a simple tetramethyl-
eneethane derivative 4 in solution at moderate temper-
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atures, thus providing an unprecedented opportunity 
to study the bimolecular reactions, particularly the 
cycloadditions, of a member of this novel class of com­
pounds. Such a study might also be expected to yield 
valuable insights into the electronic configurations of 
tetramethyleneethanes. The activation enthalpy for 
the cycloreversion 1 —*• 2 is 45.7 kcal/mol.2 In view of 
the additional cyclobutane ring strain energy present 
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in 3, the cycloreversion 3 -*• 4 should be much (at least 
28 kcal) more exothermic. Were all of this strain to be 
released in the transition state for the latter cyclorever­
sion, the activation enthalpy could be less than 18 kcal, 
a barrier sufficiently small for the expressed purposes. 
Both experimental and theoretical evidence suggests 
that the disrotation necessary for maximum strain re­
lease is not powerfully3 (or even at all8) opposed by 
symmetry factors. 

The synthesis of 3 was accomplished as shown in 
Scheme I. The diol 59 was reduced (diimide, acetic 
Scheme I 
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acid, room temperature; 94% yield) to the saturated 
diol 6: nmr (CDCl3) r 4.9 (s, 2 H), 6.2-6.6 (m, 4 H), 
7.0-8.2 (m, 8 H). Tosylation (tosyl chloride, pyridine, 
0-5°, overnight) of the latter gave 66 % of the ditosylate 
7: mp 143-145° (MeOH); nmr (CDCl3) r 2.2 (d, 2 
H, / = 8.5 Hz), 2.6 (d, 2 H, J = 8.5 Hz), 5.8-6.0 (m, 
4 H), 7.0-8.2 (m, plus s at 7.55, 14 H). Addition of 
the ditosylate to potassium /e/-/-butoxide in DMSO on 
a vacuum line gave 40-60% of the desired diene (3): 
nmr (CCl2=CCl2) r 4.8 (s, 2 H), 5.3 (s, 2 H), 6.75 (br s, 
2 H), 7.3-8.4 (m, 4 H); uv (MeOH) X max 238 nm (log 
e 3.98), 247 (log e 4.05), 257 (sh, log t 3.90); ir (CCl4) v 
2950 (s), 2875 (s), 1765 (w), 1650 (w), 882 (s), 825 cm"1 

(s); mass spectrum m/e 105, 106, 107 ( M - 1, M, M 
+ 1). The uv spectrum of 3 is very similar to that of 
I.10 Operations involving 3 were performed on a vac­
uum line, and it was routinely stored at or below —78°. 

Reaction with l-phenyl-l,3,4-triazoline-2,5-dione 
converts 3 to a bicyclo[2.2,0]-hex-2-ene adduct (8) in 

O 

3 + N — P h N — P h 

quantitative yield: mp (CHC13-Skelly B) 158-160°; 
nmr (CDCl3) T 2.3-2.6 (m, 5 H), 5.77 (s, 4 H), 6.5 (br s, 
2 H), 7.55-8.4 (m, 4 H); mass spectrum m/e 280, 281, 
282 ( M - 1, M, M + 1). 

The kinetics of the decomposition of 3 in tetrachloro-
ethylene were investigated by means of nmr spectros­
copy, measuring the rate of disappearance of the r 
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4.8 absorption. Kinetic runs were carried out to 
greater than 3 half-lives and were treated by least-
squares regression analyses of the simple rate equation 
In (A0 — AJA1 — A00) = kt. The decompositions 
were strictly first order, yielding k\ X 104 sec - 1 = 
1.319 ± 0.002 (51.5 ± 0.5°, 0.5 mM 3), 2.761 ± 0.029 
(60.5 ± 0.5°, 0.5 mAf 3), 2.893 ± 0.027 (60.5 ± 0.5°, 
0.25 mM 3), and 2.107 ± 0.006 (5.65 ± 0.5°, 0.7 mM 
3). The activation parameters calculated from all ki­
netic runs using a least-squares analysis of the Eyring 
equation are AH* = 17.46 ± 0.98 kcal/mol and AS** 
= —22.66 ± 2.97 eu. The activation enthalpy for the 
cycloreversion of 3 -*• 4 is thus 30 kcal less than that for 
1 -+• 2. It emerges that there is indeed no very large 
symmetry-engendered barrier to this reaction and that 
close to the full amount of the additional strain energy 
must be released in the transition state. The kinetics 
indicate that 3 is, in fact, a convenient and facile source 
for the tetramethylenethane 4 in solution. 

It may be worth noting that neither 4 nor o-xylylene 
cyclize appreciably (4 to bicyclo[4.2.0]octa-l,5-diene; 
o-xylylene to benzocyclobutene) at these temperatures 
in the liquid phase, though o-xylylene does in the vapor 
phase at elevated temperatures. Apparently these cy-
clizations have activation requirements that are best 
satisfied at high temperatures and low concentrations. 

It is interesting to note that the much more exothermic 
cycloreversion of Dewar o-xylylene (9) to o-xylylene 
also has A i / * « 17 kcal.11 Apparently, as predicted 
by theory, the disrotatory cycloreversion of 9 does have 
a substantial symmetry imposed barrier, and this ap­
proximately nullifies the thermodynamic advantage. 
The kinetics of the decomposition of bicyclo[2.2.0]hex-
2-ene have not been reported, but, as would be expected 
on the basis of a strongly forbidden disrotatory cleavage 
mode, it appears substantially more stable than 3.12 
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Cycloadditions of 2,3-Dimethylenecyclohexa-l,3-diene, 
a Tetramethyleneethane Derivative 

Sir: 
The formation in solution at 40-60° of the novel title 

compound 2 from a bicyclic precursor 1 has been ac-
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